
Optical phonons in spherical core/shell semiconductor nanoparticles:
Effect of hydrostatic pressure

C. Trallero-Giner,1 F. Comas,2 G. E. Marques,3 R. E. Tallman,4 and B. A. Weinstein4

1Department of Theoretical Physics, Havana University, Havana 10400, Cuba
2Department of Natural and Social Sciences, Miami Dade College, Interamerican Campus, Miami, Florida 33135, USA

3Departamento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil
4Department of Physics, SUNY at Buffalo, 239 Fronczak Hall, Buffalo, New York 14260-1500, USA

�Received 18 May 2010; revised manuscript received 15 August 2010; published 17 November 2010�

By applying a phenomenological macroscopic approach we have studied polar optical phonons in core-shell
semiconductor hybrid nanoparticles with spherical shape. The coupling of electromechanical oscillations is
taken into account within the long-wavelength limit. A detailed analysis of the optical-phonon modes is
presented with emphasis on the phonon-dispersion laws. Different kinds of II-VI and III-V semiconductor
compounds are discussed, showing the differences resulting from their bulk phonon frequency dependence on
the wave vector, and on the shell-to-core radius ratio. We make a systematic application of the theory for
different nanostructures and report all possible polar optical-phonon modes. The effects of hydrostatic pressure
on confined and surface-optical-phonon mode optical vibrations are considered. Also, we provide results for
the usual dielectric continuum approach as a function of the applied pressure, where just the electric aspect of
the oscillations is addressed. The effects of pressure on confined LO- and TO-like, and on surface-optical-
phonon modes in core/shell InP/CdS nanoparticles are explored by Raman scattering. The observed pressure-
induced shifts of the Raman spectra are well described by the theoretical calculations, and by applying a fitting
procedure to the data we may extract the value for the core diameter and the shell-to-core radius ratio.
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I. INTRODUCTION

Colloidal chemistry methods, with an appropriate han-
dling of the reaction kinetics, have allowed the growth of
core-shell quantum-dot �QD� semiconductor nanostructures.
This method enables one to obtain semiconductor nanostruc-
tures in the form of dots, tubes, wires, etc., with a relatively
high control of their sizes and shapes and displaying rather
interesting optic and electronic size-dependent properties.1–7

Based on several types of III-V and II-VI materials, hybrid
core-shell nanoparticles have been synthesized, showing
unique physical properties and promising perspectives for
the development of novel devices.8–14 In these systems, a
few monolayers of material “2” are grown on a core structure
of material “1” and, after which the whole system is embed-
ded in a host material, that may be a silicate matrix or an
organic polymeric compound.

In the current work we are essentially concerned with
polar optical-phonon properties. Usually and for simplicity,
the so-called dielectric continuum approach �DCA� is ap-
plied for a theoretical estimation of the confined TO and LO
bulklike phonon frequencies, while, in the case of small-size
crystal heterostructures, the interface phonons also should be
included.15 Most of the theoretical studies have considered
the spherical geometry15–19 while Refs. 20 and 21 treats
spheroidal geometry QDs. A more reliable phenomenological
macroscopic approach �PMA�, providing results beyond the
DCA, was developed in Refs. 22–25. In contrast with the
strictly electric character of the DCA, the PMA treatment for
polar optical phonons takes into account the coupled electro-
mechanical character of the vibrations. Application of the
correct matching boundary conditions at the heterostructure
interfaces for both the electrical and mechanical quantities

leads to the mixing of the different phonon modes. Modes of
mixed nature are indeed obtained and may display predomi-
nant LO, TO, or interface profiles in different regions of the
vibrational spectra. The general trend of this PMA for optical
vibrations in nanostructures has been discussed in several
previous references and we shall not give here a detailed
description of the method22–25 but focus on the generalization
of the phonon model to hybrid core-shell nanoparticles under
pressure �P�. We shall consider three possible core-shell hy-
brid nanoparticles: CdSe/CdS, CdS/HgS, and InP/CdS. In the
framework of the present paper we make a detailed analysis
of the consequences of the general curvature in the bulk
phonon-dispersion curves for the possible optical vibrational
modes, after a systematic application of the PMA described
in the above-mentioned references.

From the point of view of the vibrational spectra of hybrid
nanoparticles, the material 1 shows a true quantum-dot be-
havior for the polar optical oscillations, while inside the
layer of material 2, the system actually represents a quantum-
well structure for the phonon modes. Raman spectroscopy
can be employed to detect these different aspects in the pho-
non modes of hybrid nanoparticles.26,27 Moreover, pressure-
Raman studies can be an important tool for the understand-
ing of vibrational modes, identifying confined and surface
modes, helping to determine the core radius and shell-core
size ratio, and providing information on the shape and sta-
bility of semiconductor nanoparticles �see, for example,
Refs. 28–33�. Measurements of the effects of applied pres-
sure on the Raman spectrum of InP/CdS nanoparticles were
carried out and given preliminary interpretation by Tallman
et al.27 Here, these experimental results are employed to test
the generalized PMA model developed for hybrid nanopar-
ticles in the present work, particularly the model’s detailed
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predictions for the dispersion relations of the confined and
surface-optical �SO� modes as functions of the applied pres-
sure and the core-shell dimensions. It is found that the spec-
tral tuning achieved in high-pressure Raman experiments
permits one, not only to test theoretical macroscopic models,
but also to extract important information on as-grown condi-
tions and on geometrical dimensions in these novel semicon-
ductor nanostructures.

We organized the paper as follows. In Sec. II we briefly
summarize the fundamental equations used in this work and
the description of our model system. Section III is dedicated
to the essential analytical results for the core modes, shell
modes, and interface phonons of nanoparticles with spherical
symmetry. In Sec. IV we present the specific calculations at
P=0 for several hybrid nanostructures obtaining the disper-
sion of core and shell modes as a function of the shell-to-
core radii ratio, and discussing the physical interpretation of
the main results. Also, we present the dependence of the
interface phonons on the core/shell geometry and on the ex-
ternal hydrostatic pressure. Section V compares the theoret-
ical and experimental results for the effects of applied hydro-
static pressure on the Raman spectra of InP/CdS hybrid
nanoparticles. From the analysis of the phonon frequencies
corresponding to different angular momenta, core radii and
shell-to-core radii ratio, we are able to obtain a satisfactory
fit of the observed pressure dependence of the confined LO
and TO modes, and the surface phonons to the theoretically
predicted behavior under applied pressure. Finally, in Sec. VI
we present our conclusions.

II. THEORETICAL BACKGROUND

In the present work the PMA formalism is extended to
calculate the effects of applied pressure on the optical-
phonon modes of spherical core-shell nanoparticles. The fun-
damental equations describing our treatment of the optical
phonons as function of pressure �P� can be cast in the
form22–25

��2 − �T
2�P��u =

��P�
��P�

� � + �L
2 � � · u − �T

2 � � � � u

�1�

and

�2� =
4���P�
	
�P�

� · u �2�

with

�2�P� =
	0�P� − 	
�P�

4�
��P��T

2�P� . �3�

In the above equations � is the reduced mass density, �T ��L�
is the transversal �longitudinal� bulk semiconductor limiting
frequency at the � point of the Brillouin zone, and 	0 �	
� is
the static �high-frequency� dielectric constant. The relative
mechanical displacement of the ions �in units of length� is
represented by u, � is the electric potential due to the polar
character of the vibrations, the term � takes into account the

coupling between the mechanical field and electrostatic field,
and the parameter �T��L� is introduced in order to describe
the quadratic curvature of the TO �LO�-bulk phonon band,
which is assumed to be pressure independent.34 We also as-
sume that the Lyddane-Sachs-Teller relation �L

2�P�
=�T

2�P�	0�P� /	
�P� holds. Maxwell’s equations are treated
in the quasistationary approximation and the harmonic time
dependence f�t��exp�−i�t� is assumed to be valid for all
the involved quantities.

Concerning Eqs. �1� and �2�, it is possible to prove that
their solutions for the bulk semiconductor case lead to TO
and LO phonons with the frequencies �2�P�=�T

2�P�−�T
2�2

and �2�P�=�L
2�P�−�L

2�2, respectively. With an appropriate
fitting of the parameters �L and �T we may adjust to the
reported dispersion laws of the bulk semiconductors, provid-
ing we limit ourselves to a region not too far from the �
point. However, it should be realized that some of the more
commonly used semiconductor compounds show increasing
frequency for increasing �. For such a situation we need to
change the sign of the second term on the right-hand side of
the dispersion law, an issue which can be easily achieved
with the formal substitutions �T→ i�T and �L→ i�L �where
i=�−1�. Of course this change must be done in the funda-
mental Eq. �1� whenever a bulk semiconductor having this
kind of polar optical-phonon-dispersion law is involved.

For systems of finite dimensions the solutions of Eqs. �1�
and �2� must meet adequate boundary conditions at the inter-
face S. The electric potential �, as usual, should be continu-
ous at the interface as well as the normal component of the
electric induction vector D, which, according to the em-
ployed theory, is expressed by: D=4���P�u−	
�P���. The
other boundary conditions are related to the displacement
vector field u. In the usual case we must require continuity of
the vector u at S and also continuity of the normal compo-
nent of the force flux �as occurs in the case of any ordinary
elastic medium�.22–25 However, within the limits of the cur-
rent work, we adopt the boundary condition of mechanical
confinement of the form u �S=0. Whenever the mechanical
vibrations of one of the materials do not show significant
penetration into the other one, the above boundary condition
should hold true, a situation met when the fundamental fre-
quency gap between the two semiconductors involved at the
interface is large enough.35 Under this approximation, the
continuity of the normal component of the induction vector
D at the interface is cast as

�	

�P�

��

�n
�

S

=�	

��P�

���

�n
�

S

. �4�

In Eq. �4� the symbol �� � indicates that the associated
quantity is taken at the left-hand �right-hand� side of the
corresponding interface.

Let us briefly summarize how the analytical solutions of
Eqs. �1� and �2� may be achieved. We first define the quan-
tities

� = � · u and � = � � u . �5�

After substitution of Eq. �5� in Eqs. �1� and �2�, we are led to
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�2� + q2� = 0 with q2 =
�L

2�P� − �2

�L
2 , �6�

�2� + Q2� = 0 with Q2 =
�T

2�P� − �2

�T
2 . �7�

We must notice that the sign of q2 and/or Q2 changes if we
need to make the formal changes �L�T�→ i�L�T� �depending
on the type of semiconductor considered, as discussed
above�.

It is not difficult to prove that the solution of Eq. �2� can
be given in the form

� = �h −
4���P�
	
�P�q2 �, where �2�h = 0. �8�

On the other hand, the general solution for u may be ex-
pressed as follows:

u = −
��P�

��P��T
2Q2 � �h −

1

q2 � � +
1

Q2 � � � . �9�

As seen from Eqs. �8� and �9�, the needed quantities are �h,
�, and � �actually we just need the curl of ��, such that the
required boundary conditions can be fulfilled. Concerning �
and � we must solve the Laplace and Helmholtz equations
but in the case of Eq. �7� the vector �=M+N with

M = � � �v�1�r� and N =
1

Q
� � � � �v�2�r� , �10�

and v�i� �i=1,2� are solutions of the scalar equation �2v�i�

+Q2v�i�=0 �see Refs. 22 and 36�.
In order to proceed further, the geometry and fundamental

properties of the physical system considered should be estab-
lished. Concerning the quantities q2 and Q2, they can be
positive or negative depending on the frequency interval in-

volved. For instance, if the expression for Q2, given in Eq.
�7�, has a positive �T

2 term, then Q2�0 �Q20� for ��T

����T�. For a semiconductor compound such that �T
2 0

the converse conditions are met. Since we are assuming here
the spherical geometry, as done in Ref. 22, we may make use
of some of the essential results reported in that reference.

III. SOLUTION OF THE PMA EQUATIONS FOR
SPHERICAL HYBRID NANOPARTICLES

In the previous section we have summarized the funda-
mental equations that we must handle in our treatment of the
PMA and also the general method that we apply for finding
their analytical solutions. Let us now focus on the concrete
system we are interested to study, namely, a spherical hybrid
nanostructure modeled as follows: using spherical coordi-
nates �r ,� ,�� in the interval ra �arb� we have a
semiconductor labeled as 1 �semiconductor labeled as 2� and
for r�b a host material is assumed in the form of an infinite
dielectric medium which does not take part in the oscillations
and is described through its dielectric constant 	D�P�. Then,
within the chosen model system we have two spherical in-
terfaces at r=a and r=b. The analysis of the solutions using
the spherical symmetry of our model system must be consid-
ered in two parts.

A. Core modes

We consider u	0 for arb but u�0 for ra. In this
case we need � just for ra and it is easy to see that �
� jl�qr�Ylm�� ,��, where jl�x� are spherical Bessel functions
and Ylm�� ,�� are spherical harmonics.37 The electric poten-
tial is obtained from Eq. �8� and given in the form

��r� = Ylm��,��

A�1�� r

a�P��l

−
4��1�P�a2�P�

	1
�P��1
2 A�2�jl�q1r� r  a�P� ,

A�3�� r

a�P��l

+ �A�1� − A�3� −
4��1�P�a2�P�

	1
�P��1
2 jl��1�A�2���a�P�

r
�l+1

a�P�  r  b�P� ,

�A�1� + ���P�2l+1 − 1�A�3� −
4��1�P�a2�P�

	1
�P��1
2 jl��1�A�2���a�P�

r
�l+1

r � b�P� .
 �11�

In Eq. �11� we are using the following notations: ��P�
=b�P� /a�P� and �1=q1a�P�. Subscripts 1 or 2 attached to a
given physical quantity indicates the two possible semicon-
ductor compounds involved. The potential � is already con-
tinuous at the interfaces �r=a�P� and r=b�P�� and there ap-
pear three constants �A�i� , i=1,2 ,3� to be determined by the
matching boundary conditions. We should keep in mind that
q2= � ��L

2�P�−�2� /�L
2 depending on the type of semicon-

ductor involved. In any case q remains a real quantity due to
the values taken by the frequency �.

The general solution for the scalar functions v�i��r� can be
chosen as

v�i��r� = Ylm��,��wl
�i��Q1r� . �12�

According to Eq. �10� we obtain that ���=��M +�
�N, where
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� � M =
l�l + 1�

r
wl

�1��Q1r�Ylmer −
i�l�l + 1�

r

d

dr
�rwl

�1��Q1r��er

� Xlm �13�

and

� � N = i�l�l + 1�wl
�2��Q1r�Xlm. �14�

For the case of the core, where 0ra the bounded solu-
tions for wl

�i� are

wl
�i� = � jl�Q1r� Q2 � 0

il�Q1r� Q2  0
�

with jl�z� �il�z�� the spherical �modified� Bessel function.
The solutions for the displacement vector u in the present

case differ from zero just for ra�P� and are given by22

u = urYlmer + uTXlm + uL-Ter � Xlm, �15�

where

Xlm =
i�l�l + 1�

�2l + 1�sin �
� im�2l + 1�

l�l + 1�
Ylme�

+ �−��2l + 1��l + m + 1�
�2l + 3��l − m + 1�

l − m + 1

l + 1
Yl+1,m

+��2l + 1��l − m�
�2l − 1��l + m�

l + m

l
Yl−1,m�e�� . �16�

In Eqs. �13�–�16� er, e�, and e� are the unit vectors for the
spherical coordinates. It must be remarked that the expres-
sion for Xlm has an erratum in Ref. 22 which has been cor-
rected here. By a straightforward application of the above
equations we get for ra�P�,

ur = �− A�1� l�1�P�a�P�
�1�P��1T

2 �1
2� r

a�P��l−1

− A�2�a�P�
�1

jl��q1r�

+ A�4� l�l + 1�a�P�
�1

2

a�P�
r

jl�Q1r�� , �17�

uT = − iB
�l�l + 1�

Q1
jl�Q1r� , �18�

uL-T = i�l�l + 1��A�1� �1�P�a�P�
�1�P��1T

2 �1
2� r

a�P��l−1

+ A�2�a�P�
�1

2

a�P�
r

jl�q1r� − A�4�a�P�
�1

2

a�P�
r

�jl�Q1r�

+ Q1rjl��Q1r��� . �19�

In the latter set of equations A�4� and B are constants, the
prime on the function jl�z� denotes the first derivative with
respect to the argument and �1=Q1a�P�. For Q1

20 the
spherical Bessel function jl�z� should be replaced by the
modified Bessel function il�z�.37 It must be noticed that the
component uT represents uncoupled transversal mechanical
oscillations of semiconductor 1 �for ra�P��, which were

already studied in Ref. 38. On the other hand, the compo-
nents ur and uL-T are coupled oscillations, which are also
coupled to the scalar potential �. It should be realized that
the angular dependence of the components labeled by “r,”
“T,” and “L-T” actually are given through Ylm, and the vec-
tors Xlm and er�Xlm, respectively.

Applying the matching boundary condition �4� to the elec-
trostatic potential ��r ,� ,�� given in Eq. �11� at r=a�P� and
r=b�P�, and also the conditions ur �a=0 and uL-T �a=0 provide
us with the secular equation

�1jl���1�Fl��1;P� = l�l + 1�jl��1�Gl��1;P� , �20�

where the functions Fl�� ; P� and Gl�� ; P� are given in Ap-
pendix A. We can also verify that

�1L
2 �1

2 − �1T
2 �1

2 = ��L
2�P� − �T

2�P��a2�P� , �21�

making it clear that parameters �1 and �1 are not indepen-
dent quantities. Let us recall once more that, whenever the
parameter �1 becomes a pure imaginary quantity the Bessel
function jl��1� should be replaced by the modified Bessel
function il��1�. On the other hand, Eq. �21� is valid for �L

2

�0 and �T
2 �0. Otherwise, depending on the � dependence

of the bulk phonon modes in the analyzed semiconductor
compound, we should perform the changes already discussed
in Sec. II.

Equation �20� determines the core optical phonon disper-
sion law as a function of the core and shell dimensions for
the spherical hybrid nanoparticles. This is formally analo-
gous to the one reported in Ref. 22, as may be expected, but
now the functions Fl�� ; P� and Gl�� ; P� are somewhat dif-
ferent. Solving the transcendental Eq. �20� we can find, for
each value of l=0,1 ,2 , . . ., the phonon frequencies as a func-
tion of P and ��P�. Hence, the set of frequencies �l,N�P�
depends on the nanostructure through the ratio ��P�
=b�P� /a�P�.

For l=0 we obtain from Eq. �20� pure core-confined un-
coupled phonons having �a� LO character and frequencies as
functions of P given by

�L,l=0,N
2 �P� = �L

2�P� −
�1,N

2

a2�P�
�1L

2 , N = 1,2 . . . , �22�

where �1,N are the solution of the equation tan�z�=z, and
having �b� TO character with

�T,l=0,N
2 �P� = �T

2�P� −
�2N + 1�2�2

4a2�P�
�1T

2 , N = 0,1,2, . . .

�23�

Notice, that in this case the LO and TO frequencies are in-
dependent of the shell width b�P�. A compact analytical ex-
pression for l=1 is displayed in Appendix A.

In the limit ��P�→1 �or equivalently ��P�→
� and un-
der the condition 	D�P�→	2
�P�, Eq. �20� reduces to the
case of a single sphere. The main point here is that the region
for r�a�P� is now a composite in contrast with the situation
considered in Ref. 22 at P=0.
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B. Shell modes

Here we must consider u	0 for ra�P� but u�0 for
a�P�rb�P�. In that case ���C1jl�qr�+C2nl�qr��

Ylm�� ,�� for a�P�rb�P� with nl�x� the spherical Bessel
function of the second kind.36,37 Hence, the potential now
reads

��r� = Ylm��,��
 �B�1� + B�2� −
1

�2
2 �B�3�jl��2� − B�4�nl��2���� r

a�P��l

r  a�P� ,

B�1�� r

a�P��l

+ B�2��a�P�
r

�l+1

−
�B�3�jl�q2r� + B�4�nl�q2r��

�2
2 a�P�  r  b�P� ,

�B�1��2l+1�P� + B�2� −
�l+1�P�

�2
2 �B�3�jl���P��2� + B�4�nl���P��2����a�P�

r
�l+1

r � b�P� .
 �24�

As previously, the potential � is already continuous at r
=a�P� and r=b�P� but now involves the four constants Bi
�i−1,2 ,3 ,4�. Let us now summarize the expressions for the
components of the vector u,

ur = −
�2�P�a2�P�
�2�P��2T

2 �2
2�lB�1�� r

a�P��l−1

− �l + 1�B�2��a�P�
r

�l+2�
−

a2�P�
�2

�B��3�jl��q2r� + B��4�nl��q2r��

+
l�l + 1�a2�P�

�2
2

a�P�
r

vl�Q2r� , �25�

uT = − i
�l�l + 1�

Q2
wl�Q2r� , �26�

uL-T = i�l�l + 1���2�P�a2�P�
�2�P��2T

2 �2
2�B�1�� r

a�P��l−1

+ B�2�

��a�P�
r
�l+2� +

a2�P�
�2

2

a�P�
r

�B��3�jl�q2r�

+ B��4�nl�q2r�� −
a2�P�

�2
2

a�P�
r

d

dr
�rvl�Q2r��� �27�

with

vl�Q2r� = B��5�jl�Q2r� + B��6�nl�Q2r� �28�

and the function wl�Q2r� is formally analogous to vl�Q2r� but
involving different constants. In order to be consistent with
the constants appearing in Eq. �24�, we define B��i� /B�i�

=	2
�P� / �4��2�P�a2�P�� for i=3,4 ,5 ,6. As in the former
case, uT describes uncoupled transversal oscillations not in-
volving an electric potential, while ur and uL-T describe the
coupled oscillations where the electric potential is also in-
volved. The uncoupled oscillations will not be considered in
the present work since they have been previously studied in
Ref. 38.

Applying the previously above discussed matching
boundary conditions at the interfaces r=a�P� and r=b�P� we

are able to obtain the phonon frequencies as a function of the
parameters � and P for the different modes in the slab. In
Appendix B we have written a simplified expression for the
secular determinant, which can be used in the calculations of
the shell phonon frequencies �l,N�P ,��P��. As in the case of
the core modes, for l=0 we obtain from Eqs. �B1�–�B6� of
Appendix B pure shell-confined uncoupled phonons. For the
LO-type modes, the eigensolutions �2,N=a�P�q2 are given by

tan��2���P� − 1�� =
�2���P� − 1�
1 + �2

2��P�
. �29�

Similarly, for the TO modes we obtain

�2,N = a�P�Q2 =
N�

1 − ��P�
, N = 1,2, . . . �30�

Notice that in the case of quantum wells the phonon frequen-
cies would depend on the well width d �in our case d
=b�P�−a�P�� while for the shell modes the eigenvalues
found here depend on the ratio ��P�=b�P� /a�P�.

C. Interface phonons

By keeping both the mechanical and the electrostatic
fields, coupled via the differential Eqs. �1� and �2�, we are led
�for l�0� to a general formulation that describes the phonon
modes having mixed mechanical and electrical nature.39 The
coupled oscillations involve 4�4 and 6�6 systems of linear
homogeneous equations which determine the dispersion law
for the core and shell modes as a function of P and the ratio
b�P� /a�P�, respectively. Typically, Raman spectra in hybrid
nanoparticles33 exhibit structures which are related to SO
phonons of predominantly electric character. To characterize
the pressure-dependent frequencies of these phonons we can
use a simplified version of the set of Eqs. �A1� and �B7�
given in Appendices A and B. The corresponding SO-
phonon frequencies then can be obtained in the framework of
the DCA. This model predicts correctly the SO oscillations if
the bulk phonon wavelength �P is smaller than the charac-
teristic quantum-dot dimension L ��PL�.40 In the opposite
case where �P�L, the preceding more general and complete
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approach should be employed in order to obtain a reliable
description of optical modes �optical vibron modes41�. Ex-
tending the work of Ref. 40 to evaluate the effects of applied

pressure on the SO modes of spherical core-shell nanopar-
ticles within a DCA treatment, we obtain that the corre-
sponding phonon frequencies are given by the equation

	�2���,P�
	D�P�

= −

��2l+1�P� − 1�	�1���,P� + �1 +
l + 1

l
�2l+1�P��	�2���,P�

��2l+1�P� − 1�	�2���,P� + �1 +
l

l + 1
�2l+1�P��	�1���,P�

�31�

with

	�i���,P� = 	i
�P�
�2 − �iL

2 �P�
�2 − �iT

2 �P�
�32�

the dielectric functions for the core �i=1� and shell �i=2�.
Equation �31� provides the SO-phonon frequencies �l as a

function of the geometric factor b�P� /a�P� and P for differ-
ent values of angular momentum l=1,2 , . . . The physical na-
ture of these SO-phonon modes is associated with the spatial
symmetry of the core-shell structure. For each value of l we
have three independent interface optical phonons. One of
them is related to the interface phonons of a spherical dot
embedded in a host material characterized by a certain effec-
tive dielectric constant and the others are connected to the
two interfaces involved in the shell structure, i.e., to the case
of interface LO phonons of the spherical shell sandwiched
between the spherical core and a host dielectric medium. As
we stated below, these geometrical properties of the SO
phonons can be used to extract quantitative information from
Raman measurements about the geometric parameters char-
acterizing the hybrid nanoparticles.

IV. DISPERSION RELATIONS FOR SEVERAL HYBRID
NANOPARTICLES

In order to provide deeper understanding of the physical
meaning embraced in the equations developed in the previ-

ous section we shall discuss the dispersion relations at P=0,
i.e., the frequency dependence on �=b /a, for various
optical-phonon modes, considering several core/shell hetero-
structures made of different II-VI semiconductor com-
pounds. We analyzed two possible hybrid nanostructures:
CdSe/CdS and CdS/HgS, discussing their frequency disper-
sion laws for l=0 and 1. The physical parameters of these
semiconductor compounds are given in Table I.47 Note also
that, the bulk semiconductor frequency dependence on the
wave vector � for these materials displays different charac-
ters, as may be seen from Table II. The materials for the
various core/shell nanostructures were chosen in order to
analyze all the possible cases.

In Figs. 1 and 2 we plot the frequency � for two consid-
ered hybrid nanoparticles as a function of the ratio �=b /a
and for angular momentum l=0. We are showing both the
core modes �left panels� related to a sphere �ra� and the
shell modes related to a spheroidal slab �right panels� �a
rb�. For the l=0 symmetry, all modes are uncoupled
phonons with purely mechanical nature. For the core region,
Eq. �22� leads to longitudinal modes while the transversal
modes are given by Eq. �23�. In both cases the frequencies
do not depend on the ratio �, but only on the core radius, and
therefore they are described by horizontal lines in Figs. 1 and
2. However, the frequency separation between two core
modes depends on the core radius a and on the magnitude of
the parameter �T�L�. For the slab region Eq. �29� leads to the
roots �2 for the longitudinal modes, whereas �2, given by
Eq. �30�, describes the transversal-optical oscillations. As
may be seen, for the shell modes these frequencies depend

TABLE I. Values of the semiconductor physical parameters.

Parameters CdSa HgSb CdSec

	0 8.7d 18.2 9.53

	
 5.3 11.36 5.72

�L �cm−1� 305 250e 213.1

�T �cm−1� 238 175e 165.2

�T �ms−1�103� 1.58 5.25e 0.002

�L �ms−1�103� 5.04 2.50e 2.969

aReference 42.
bReference 43.
cReference 44.
dReference 45.
eReference 46.

TABLE II. Trends for the dependence of the bulk phonon fre-
quencies on wave vector �.

Material Longitudinal Transversal

CdSa Decreasing Increasing

HgSb Increasing Increasing

CdSec Decreasing Decreasing

InPd Decreasing Increasing

aReference 42.
bReference 43.
cReference 44.
dReference 48.
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strongly on the ratio �=b /a converging either to the bulk
values �L or to �T as �→
.

In Fig. 1�a�, the first five LO modes of the CdSe core are
shown in the upper half of the figure, whereas the transversal
CdSe core modes all are concentrated in a single line, in
close coincidence with the �T value for bulk CdSe. This
latter result is due to the very low value of �T for this case,
in contrast to the large value of �L needed to describe the

downward curvature of the bulk CdSe longitudinal phonon
branch. Figure 1�b� presents the frequency dependence of the
slab CdS modes as a function of the ratio b /a. For the lon-
gitudinal modes the frequency presents a growing character
as the ratio �=b /a increases while for the transversal modes
the opposite dependence is seen. The chosen interval for � is
actually very large and, as can be observed, the frequencies
display a rapid trend toward their bulk values.

Figure 2 shows the same kind of plot for the CdS/HgS
core-shell nanostructure. The structure of the figure is the
same as in Fig. 1 and we shall focus on the main material-
related differences. In the CdS core region �Fig. 2�a��, both
the longitudinal �upper section� and transversal �lower sec-
tion� mode frequencies are shown but now five separated
values of the frequency are clearly seen for the transversal
modes �the �T parameter for CdS is not so small�. The lon-
gitudinal frequencies are again all lower than the bulk value
but the transversal frequencies are higher than �T. The main
differences are seen in the HgS shell modes �Fig. 2�b��. The
frequencies for the longitudinal modes �upper section�
present a decreasing character for growing values of b /a and
a rapid trend toward the HgS bulk frequency �L. The fre-
quencies for the transversal modes �lower section� are also
decreasing functions of the ratio b /a. In both cases we ob-
serve that very large frequencies are obtained when �→1. It
is worth remarking that the oscillation frequencies have a
natural upper bound for obvious physical reasons; they can-
not be higher than the corresponding bulk semiconductor
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lation we fixed the value of a=30 Å. The bulk LO- and TO-phonon
frequencies are indicated by dashed lines.
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value of the frequency at the Brillouin-zone boundary �for
��� /a0 with a0 the lattice constant�.

The case of l=1 for the CdSe/CdS core modes is dis-
played in Fig. 3. Here, the dispersion curves are calculated
from the solutions of Eq. �A5� and describe coupled phonon
modes of mixed nature. In Fig. 3�a�, the solid lines are com-
puted as a function of b /a for CdSe/CdS particles with con-
stant a=30 Å while the dashed lines correspond to a strictly
spherical CdSe quantum dot embedded in a host material

with 	D=4.6. In general, for a fixed core radius we observe
the same weak dependence on the ratio b /a as in Figs. 1 and
2. However, now one can see some bending in the dispersion
caused by the interaction with the electrostatic potential of
the surface oscillation. This character in the core-mode dis-
persion of the CdSe/CdS hybrid particle is indicated by a
circle where the interaction of the LO-confined phonon with
the surface mode becomes strong for a certain value of the
ratio b /a. Figure 3�b� shows the dependence on � of the first
seven eigenfrequencies for the CdSe-core phonons in the hy-
brid nanoparticle when changing the dielectric constant 	D of
the host material. We have fixed the values of 	i
 �i=1,2� at
P=0 according to Table I, and have taken 	2
 /	D=0.5, 3,
and 6. We observe strong dependence on the dielectric con-
stant 	D and, also, that the sign �� � of the curvature of �
versus � depends on the value of 	2
 /	D, being �+� for
	2
 /	D�1 and �−� for 	2
 /	D1. Finally, notice that the
phonon frequencies approach asymptotically to the same
value independent of 	D as b /a increases. For larger values
of b /a, the influence of the outer medium becomes negli-
gible and we can consider the CdSe quantum dot as embed-
ded in a host CdS material.

Figure 4 is devoted to the l=1 core and shell modes found
for the CdS/HgS hybrid nanostructure system. In the panel
�a� we observe the same trends as in the case of Fig. 3�a� for
the core modes �again a=30 Å�, where difference arises
only through the value of the physical parameters used in
each of the core-shell nanostructures, and through the stron-
ger interaction with the electrostatic potential surface modes
close to �=1. Panel �b� shows the Hg-shell modes near the
bulk transversal HgS phonon frequency �T, as calculated
using Eq. �B7�. In this case, the HgS bulk phonon dispersion
increases as the phonon wave vector increases �see Table II�
and hence we have a set of confined phonons above �T well
separated in frequency for a=30 Å. The frequencies present
an increasing character for growing values of b /a while they
rapidly trend toward the HgS bulk frequency �T for b→a.

TABLE III. Values of parameters used for the calculation of the
phonon modes of InP/CdS hybrid nanoparticles under pressure as
plotted in Fig. 5 and in the fitting of Fig. 7 �Ref. 27�. The tempera-
ture coefficients are used to shift the P=0 values of �L and �T

consistent with the observed 80 K laser heating of the samples.

Parameters InPa CdSb

�L �cm−1� 344.5 301.7
d�L

dP �cm−1 GPa−1� 5.4 4.8

�T �cm−1� 303.3 231.7
d�T

dP �cm−1 GPa−1� 5.8 4.8
d�L

dT �cm−1 K−1� �0.015 �0.026c

d�T

dT �cm−1 K−1� �0.018 �0.024c

	
 9.6c 5.4b

d	


dP �GPa−1� �0.106d �0.054

aReference 48.
bReference 42.
cReference 43.
dCalculated, see Wang et al., Ref. 48.
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This result contrasts with the case of l=0 where we are deal-
ing with purely confined phonons. Also from Fig. 4�b�, we
observe three surface modes whose interaction with the con-
fined shell modes causes the bending in the dispersion curves
near 176, 188, and 198 cm−1, and we learn that for large
values of � the core-shell SO phonon frequencies are roughly
independent of the �. The strong mixture between LO and
TO, and the interaction with the electrostatic potential are
directly responsible for the dispersion of the shell modes
seen in Fig. 4�b� as a function of the ratio b /a.

Infrared and Raman spectroscopies are frequently
used to investigate the surface-optical phonons in
nanoparticles.26,33,49–54 Figure 5 shows the effect of hydro-
static pressure on the dispersion relations of the surface-
optical-phonon frequencies in InP/CdS core-shell nanopar-
ticles. In the present calculation we used the semiconductors
parameters given in Table III. To account for the pressure
dependence of the medium’s dielectric function we em-
ployed 	D�P�=13.9+0.013P with P in GPa, corresponding
to the observed 	D�P� of pyridine, a pressure medium used in
our diamond-anvil cell �DAC� experiments.27,55 Table III val-
ues are chosen within the range of accepted experimental
results for bulk InP and CdS �for d	
 /dP in InP the theoret-
ical value of Wang et al.48 is used�, and again we neglect the
effects of internal strain at the InP-CdS interface. We can
expect this to be quite small compared to the variations in the
literature values, which typically are a few inverse cm for �L
and �T, and �5–15 % for the pressure and temperature
coefficients.56 In Fig. 5 we display three types of surface
vibration modes obtained from Eq. �31� for values of the

hydrostatic pressure P=0, 2, 4, and 6 GPa, and l=1 and 2.
The upper branches represent the SO frequencies of the InP
core, which practically do not change with the values of �.
However we see that ��b /a , P� increases as the pressure is
raised. These frequencies can be considered to be the SO
phonon modes of an InP spherical quantum dot imbedded in
an “effective dielectric medium 	D ef f�P�.”40 The two lower
sets of branches give the frequencies of the shell CdS-SO
phonons, and they correspond to the interface optical modes
of a spherical quantum well sandwiched between a spherical
InP dot and an infinite host dielectric medium. In contrast to
the interface modes of the InP core, the upper �lower� SO
modes of the CdS shell decrease �increase� strongly as �
increases, but the three sets of modes present the same in-
creasing trend with pressure.

The interface optical phonons are directly dependent on
the core/shell geometry via Eq. �31� and strongly so for the
shell’s SO modes in InP/CdS nanoparticles �see Fig. 5�.
Hence, the first-order Raman technique provides potentially
sensitive means to determine of the growth parameter �
=b /a, in addition to yielding information on the core radius
through the a dependence inherent in the confined core
modes �Eqs. �22� and �23�� that are observed using the Ra-
man effect.

We point out that the intensities of interface phonon con-
tributions to the first-order-assisted scattering of light are
linked to the breakdown of the Raman selection rules in
spherical QDs and can be further affected if some nonspheri-
cal symmetry is present in the quantum dots.40 For as-grown
ensembles of nominally spherical quantum dots, the frequen-
cies of the observed peaks and shoulders are closely related
to the different types of core and/or shell modes described in
Secs. III and IV.

V. HIGH-PRESSURE RAMAN RESULTS IN CORE-SHELL
NANOPARTICLES

A Raman-scattering study was performed on the effects of
applied hydrostatic pressure on InP/CdS hybrid nanopar-
ticles. The samples are fabricated by a two-stage colloidal
chemistry process,14,27 and presented an ensemble of nearly
spherical nanoparticles with InP cores ranging in diameters
from 40–60 Å, coated by CdS shells having outer diameters
in the range 50–90 Å, as indicated by photoluminescence,
x-ray, and electron microscopy characterization.27,57 High-
pressure Raman spectra were measured at room temperature
using DAC. The Stokes-to-anti-Stokes ratio showed �80 K
laser �at 5 mW power� heating of the samples. Raman spec-
tra recorded at different pressures are displayed in Fig. 6.
Two peaks can be seen due to the InP confined LO- and
TO-phonon modes, and a broad low-frequency shoulder con-
tributing to the tail of the TO peak is detected. The latter
feature is assigned to the SO phonons of the CdS shell. The
solid curves are line-shape simulations of the Raman spectra
based on the PMA calculations, as discussed below.

The Raman cross section shown in Fig. 6 presents an
anomaly which is not common in II-VI nanocrystal, i.e., the
appearance of the TO phonon line with an almost equal in-
tensity to the LO peak at any applied pressure. It is well
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FIG. 6. �Color online� Raman spectra at 373 K for InP/CdS
nanoparticles at different pressures �adapted from Ref. 27�. The
pressure media are pyridine for the 0.0 GPa trace and 4:1 methano-
l:ethanol for the other traces �Ref. 58�. Dashed lines indicate depen-
dence of the InP confined LO and TO phonons, and the CdS SO
mode on the pressure. Solid curves are PMA-based line-shape
simulations using the best-fit results of Fig. 7.
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documented that in the first-order resonant Raman scattering
of II-VI colloidal nanocrystals the TO vibration peak is ab-
sent. In spherical quantum dots the translational symmetry is
broken. Then the stronger Fröhlich interaction �F� associated
only with the LO oscillation becomes dipole allowed and
dominates over the weaker deformation-potential �DP� di-
pole coupling allowed for both TO and LO. Hence, typical
spectra show a peak centered at the confined LO mode fre-
quency with an asymmetric low-energy wing. The presence
of the blueshifted TO vibration in InP/CdS and other InP-
based nanoparticles indicates an anomalously large contribu-
tion of the DP interaction. The strong TO signal cannot be
explained in terms of the nonconservation of the translational
symmetry but by the dependence of the intensity on the
quantum-dot radius �R� and the interplay between the DP and
F exciton-phonon coupling constants. In Ref. 52 it is shown
that the Raman intensity is proportional to 1 /R for the F
mechanism; while in the case of the DP mechanism the de-
pendence is 1 /R3. Thus, for decreasing radius, the contribu-
tion of the DP relative to the F cross section enhances as
1 /R2. Also, compared to typical II-VI materials, the lower
ionic charge �lower Fröhlich coupling constant� and the
larger value of the optical deformation-potential characteris-
tic of InP, explain the observed important role of the DP
mechanism.

For this sample studied in Fig. 6, with 45 Å mean core
diameter, the observed 1.7 cm−1 and 1.4 cm−1 shifts at P
=0 in the confined LO- and TO-phonon frequencies from the
bulk values are related, respectively, to the decreasing and
increasing dependence of the InP bulk frequencies on the
phonon wave vector �see Tables II and III�. The observed

line broadening of the LO- and TO-phonon peaks is mainly
due to the distribution of core diameters in the sample en-
semble. Likewise, based on the theoretical predictions for the
dependence of the interface modes on b /a �Eq. �31��, the
size distribution in the ensemble should also contribute ap-
preciably to the width of the shoulder arising from the SO
modes of the CdS shell. In Fig. 6 we observe that the LO and
TO peak positions are shifted to higher energy with increas-
ing pressure. Also, the low-frequency SO shoulder appears to
follow the same pressure dependence trend as P increases. A
guide to the pressure-induced shifts of the assigned phonon
modes is indicated by the dashed lines in this figure.

In Fig. 7 the solid triangles show the positions of the
measured LO, TO, and SO features as a function of P. The
frequencies ��P� were obtained by successive three-peak
empirical fits to the spectra using the iterative method de-
scribed in Ref. 27 to reduce the random scatter in the pres-
sure dependence of the data points. The curves in Fig. 7 give
the theoretical mode frequencies calculated as a function of
pressure following the PMA model described above with the
core radius varied to optimize the agreement with the data
for the confined LO- and TO-core phonons. The latter
confined-mode results, calculated according to Eqs. �22� and
�23�, are shown by the solid curves, while several solutions
of Eq. �31� for the InP-core SO modes and the CdS SO
modes are represented by the dots �l=1, b /a=1.2, 1.3, and
1.4� and dashed curves �l=2, b /a=1.1, 1.2, and 1.3�. In the
calculation we have used the values �L=17.4�103 cm−1 Å
and �T=7.0�103 cm−1 Å for InP.52 From the best fit for the
pressure dependence of the mode frequencies obtained in the
PMA calculations to both the confined-mode and the SO-
mode data, we have extracted the values of 2a=45�10 Å
and b /a=1.2. Overall, the agreement with the Raman results
in Fig. 7 shows that the theory can reproduce quite nicely the
observed pressure dependence of the LO-, TO-, and SO-
phonon modes in InP/CdS hybrid nanoparticles. To further
test the agreement between theory and experiment, the final
results of the PMA calculations are used to simulate the
spectral line shapes in Fig. 6 �bold solid curves�. Four
Lorentzian peaks are included in this case to account for the
LO- and TO-confined modes and the outer-surface CdS SO
modes observed in the spectra, as well as the InP SO modes
expected to contribute to the unresolved background between
the LO and TO peaks. For simplicity l=2 and b /a=1.2 are
used to compute the SO modes. Adjusting the heights and
widths of the four peaks then optimizes the simulations. As
seen in Fig. 6, the results give a satisfactory representation of
the spectra.

VI. CONCLUSIONS

In summary, we have implemented a direct calculation of
the coupled optical-phonon modes in spherical core-shell hy-
brid nanostructures under applied high hydrostatic pressure
The extended phenomenological macroscopic approach used
to study the optical phonons in core/shell nanoparticle sys-
tems allows the description of the main characteristics of the
oscillations in these structures at all pressures within the re-
gime of linear elastic response. We showed that the shell
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FIG. 7. �Color online� Calculation of the pressure dependence of
the phonon frequencies for the InP-confined LO and TO phonons
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phonon modes are very sensitive to the spatial geometrical
ratio b /a while the core modes are almost independent of the
capping shell thickness. For the corelike and shell-like sur-
face phonons, which involve a long-range electric potential,
we found that their frequencies increase with P, and calcu-
lated the pressure-induced shifts for a given value of the ratio
b /a. The effects of the pressure on the optical oscillations
show the same trends as for the bulk optical phonons. The
present PMA calculations are confirmed by direct measure-
ments of the pressure dependence of the first-order Raman
scattering in InP/CdS hybrid nanoparticles.

Investigations of the effects of high pressure on the Ra-
man spectra of optical-phonon frequencies in core/shell
semiconductor nanoparticles can enhance our understanding
of several important properties in these complex systems. In
addition to providing direct knowledge about the vibrational
properties of the hybrid nanoparticles under pressure, such
studies, informed by the PMA theory developed here, can
yield useful information on the �T and �L parameters gov-

erning the bulk phonon dispersion at the � point of the Bril-
louin zone, and also on the geometric dimensions a and b
which are significant factors for controlling the growth and
applications of semiconductor hybrid nanoparticles.
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APPENDIX A: PHONON DISPERSION IN THE CORE

In this case the boundary conditions at r=a�P� and r
=b�P� lead to the equations

�
l	1
 + l + 1 − 	1
�1jl���1� − �l + 1�jl��1� − �2l + 1� 0

�	2
 − 1� − �	2
 − 1�jl��1� − 	2
� l�2l+1

l + 1
+ 1� − �2l+1 + 1 0

lK1 �1
2�1jl���1� 0 − l�l + 1��1

2jl��1�
�l�l + 1�K1

�l�l + 1��1
2jl��1� 0 − �l�l + 1�f l��1��1

2
�� A�1�

A��2�

A�3�

A��4�
� = 0 �A1�

with K1= ��1L
2 �P�−�1T

2 �P��a2�P� /�1T
2 , f l��1�= jl��1�

+�1jl���1�, 	1
=	1
�P� /	2
�P�, 	2
=	2
�P� /	D�P�, and
A�2�4� /A2�4�= �4��1�P�a2�P�� / �	1
�P��1

2�.
The above system of linear homogeneous equations deter-

mines the constants �up to a normalization constant� and the
dispersion law for the coupled modes in the core. Consider-
ing the general case when l�0, we must require the deter-
minant of this system to be equal to zero, providing us with
the Eq. �20� where

Fl��;P� = �l	1
 + l + 1��2f l��1� − 	1
K1lpl��� − �	2
 − 1�

��2l + 1��l + 1�
�2

�l���
f l��� , �A2�

Gl��;P� = �l	1
 + l + 1��2jl��� + K1pl���

− �	2
 − 1�
�2l + 1�

�l
��l + 1��2jl��� + K1pl���� ,

�A3�

�l = �l + 1��	2
 − 1� + �l	2
 + l + 1��2l+1�P� , �A4�

and pl���= ljl���−�jl����. In the case of l=1 we can derive
from Eq. �A1� and for Q1

20 and q1
2�0, that the coupled

solutions satisfy

2
�1 − �1 cot��1��

2�1 cot��1� + ��1
2 − 2�

=
E�P��2���2 + 1� − � coth���� + K1	1
�3� coth��� − �3 + �2��

E�P��2�� coth��� − 1� − K1�1 − 3
�	2
 − 1�

�1
��3� coth��� − �3 + �2��

�A5�
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with

E�P� = 	1
 + 2 − 6
�	2
 − 1�

�1
.

APPENDIX B: PHONON DISPERSION IN THE
SHELL

Additional boundary conditions of the type given in Eq.
�4� for the electric potential �, as well as the mechanical

vector displacement condition u �S=0, when applied at the
spherical surfaces r=a�P� and r=b�P� provide us with the
equations

l�2
2�	1
 − 1�B�1� + �2

2�l	1
 + l + 1�B�2� − �l	1
jl��2�

− �2jl���2��B�3� + �l	1
nl��2� − �2nl���2��B�4� = 0,

�B1�

�2
2��l + 1� + l	2
�B�1� +

�l + 1��2
2

�2l+1�P�
�1 − 	2
�B�2� −

1

�l�P�
��l + 1�jl���P��2� + ��P��2	2
jl����P��2��B�3� −

1

�l�P�
��l + 1�nl���P��2�

+ ��P��2	2
nl����P��2��B�4� = 0, �B2�

K2�2�lB�1� − �l + 1�B�2�� + �2
2�B�3�jl���2� + B�4�nl���2�� − l�l + 1��2�B�5�jl��2� + B�6�nl��2�� = 0, �B3�

�l�l + 1���2
2K2�B�1� + B�2�� + �2

2�B�3�jl��2� + B�4�nl��2�� − �2
2�B�5�f l��2� + B�6� f̃ l��2��� = 0, �B4�

�l�P��2K2�lB�1� −
l + 1

�2l+1�P�
B�2�� + ��P��2

2�B�3�jl����P��2� + B�4�nl����P��2�� − l�l + 1��2�B�5�jl���P��2� + B�6�nl���P��2�� = 0,

�B5�

�l�l + 1���l�P��2
2K2�B�1� +

1

�2l+1�P�
B�2�� + �2

2�B�3�jl���P��2� + B�4�nl���P��2�� − �2
2�B�5�f l���P��2� + B�6� f̃ l���P��2��� = 0,

�B6�

where f̃ l�z� is analogous to the former f l�z� but now jl�z� is replaced by nl�z�. In the latter equations K2= ��2L
2 �P�

−�2T
2 �P��a2�P� /�2T

2 and B��i�=4��2�P�a2�P� / �	2
�P��B�i� for i=3,4 ,5 ,6.
Equations �B1�–�B6� are a 6�6 system of linear homogeneous equations defining the constants B�i� �up to the normaliza-

tion constant�. Requiring the system’s determinant to be zero, we are led to the dispersion law for the coupled oscillations. The
latter determinant equation gives us the shell phonon frequencies for the different coupled modes as a function of the geometric
parameter ��P�. The determinant describing the phonon modes for a spherical slab is given by

�
l − 1 jl���2� nl���2� − ljl��2� − lnl��2�

�2
�2

l + 1
jl��2� nl��2�

− �2f l��2�
l + 1

− �2 f̃ l��2�
l + 1

l�l�P�
− 1

�l+1�P�
��P�jl����P��2� ��P�nl����P��2� − ljl���P��2� − lnl���P��2�

�l�P��2
�2

�l + 1��l+1�P�
jl���P��2� nl���P��2�

− �2f l���P��2�
l + 1

− �2 f̃ l���P��2�
l + 1

l�2�	1
 − 1�
�2l

l + 1
	1
 + �2 − hl��2� − h̃l��2� 0 0

�2�l + 1 + l	2
�
�2

�2l+1�P�
�1 − 	2
� gl���P��2� g̃l���P��2� 0 0

� = 0. �B7�

We have now introduced the notation
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hl�x� = K2�P��l	1
jl�x� − xjl��x��/�2
2,

h̃l�x� = K2�P��l	1
nl�x� − xnl��x��/�2
2,

gl�x� = − K2�P���l + 1�jl�x� + 	2
xjl��x��/��2
2�l�P�� ,

g̃l�x� = − K2�P���l + 1�nl�x� + 	2
xnl��x��/��2
2�l�P�� .
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