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A single model is developed for the different photoelastic response of Ge-family materi-

als and chalcogen-based molecular solids. If g' is the "Griineisen" parameter for the elec-

tronic susceptibility, experiment shows that P' &0 for the former group, while P' & 1 for
the latter. In addition, several group IV-VI compounds have 0&+'&1. In our model the
dielectric constant is calculated, within the Drude formalism, using one Penn-Phillips os-

cillator for Ge-family solids and two for molecular chalcogenides. The model predicts
that g should depend linearly on 2g/Eg, with Eg the Penn-Phillips gap and dimension-

less g determined from experiment. Reliable values of g', Eg, and other relevant parame-
ters are tabulated for a large number of materials. New experimental results are also
presented for ZnTe. The experimental evidence provides support for the model. A plot
of g' versus 2g/E~ exhibits the predicted linear correlations for materials with J' &0 and
g' & 1; the slopes are in excellent agreement with measured band-gap volume derivatives.
These correlations pertain to amorphous and crystalline solids alike. For the molecular
chalcogenides, it is concluded that band-broadening influences g' through a uniform "red
shift" of the lower-energy oscillator with respect to the stationary upper oscillator. The
observed photoelastic trends are related to bonding topology by analogy with arguments

previously applied to phonons. P'& 1 follows from the bonding strength dichotomy in

{& 3D)-network structures, whereas g' &0 obtains for covalent 3D-network solids. It is

suggested that P' can serve as an indicator of network dimensionality for these two cases.

I. INTRODUCTION

The effect of compression on the low-frequency
optical dielectric constant of nonmetallic solids
(eo no, wh——ere no is the infrared refractive index
in the transparent regime) has been treated by
many authors. ' For ionic solids, ' especially the
alkali halides, the Lorenz-Lorentz local-field for-
malism has often been applied. However, substan-
tial pressure-induced changes in the ionic polariza-
bility must be included in many cases. ' Van
Vechten showed that, within the Drude formal-
ism, a Penn-Phillips —type single-oscillator
model' '" could successfully treat covalent and
ionic A B crystals. In particular, Van Vechten
could explain the qualitatively different behavior of
covalent Ge-family (groups IV, III—V, and
II—VI) semiconductors, and the alkali halides.
This difference is reQected in the sign of the pho-
toelastic parameter P' defined by

x=-"' (1)
dlnV '

where X=(Gp —1)/4nis the e.lectronic susceptibili-
ty. One finds that 7' &0 for Ge-family materials,
and 7'y 0 for alkali halides.

The tetrahedral structure of the Ge family con-
stitutes a covalently bonded macroscopically three-
dimensional (3D) network. We shall also be con-
cerned here with solids characterized by covalently
bonded networks of macroscopic dimensionality
less than 3.' ' Typical examples are layered
As2S3 (2D network), chainlike trigonal Se (1D net-
work), and orthorhombic S (OD network, consisting
of isolated Ss rings). As a consequence of low net-
work dimensionality, these chalcogen-based materi-
als (materials containing a high concentration of
group VI atoms) can be classified as molecular
solids. ' '

The photoelastic behavior of these molecular
chalcogenides presents an even more striking con-
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FIG. 1. Effect of pressure (room temperature) on the transmission edges (absorptions a-10 —10 cm ') of e-ZnTe
and a-As+3. Note, photon energy increase to the left. Upper and lower scales pertain to c-ZnTe and a-AsqS3, respec-
tively. The blue shift for c-ZnTe and red shift for a-As2S3 between 4 and 20 kbar are emphasized by dashed arrows.
The a-As2S3 edge does not broaden substantially until the pressure medium becomes quasihydrostatic, -90 kbar. The
sharper c-ZnTe edge broadens markedly at -65 kbar, presumably becoming indirect due to the crossover of I and X
gaps. Optical path length nod at each pressure was determined from the fringe spacing in the transparent region, at
-1.75 eV for c-ZnTe, and —1.45 eV for a-As2S3.
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trast to that of the Ge family than the behavior of
the alkali halides. An excellent example of this
can be seen in Figs. 1 —3, which illustrate the pres-
sure dependence of np and the threshold band gap
E, of crystalline (c) ZnTe and amorphous (a)
As2S3. ' ' For c-ZnTe, E, increases strongly with
pressure, and np decreases. The detailed depen-
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FIG. 2. Pressure dependence of refractive index no at
—1.75 eV (crosses and solid line), and threshold energy

E, at a 5)&10 cm ' (solid circles and dashed curve),
for c-ZnTe. Note contrast with Fig. 3. Sample thick-
ness was d =11 pm for no measurements. Several sam-

ples (from the same starting material) of thicknesses
10—30 pm were used to measure E,. SuAicient data
were recorded in overlapping pressure regions in order
to accurately combine results. The best quadratic fit
gave E,=(2.255+0.005) eV+(11.5+0.5) )(10
eV/kbar P —(5.0+0.3)X 10 ' eV/kbar P . Sublinear
behavior above 65 kbar is due in part to the direct-
indirect (I —X) edge crossover. A trarisition to a visibly

opaque phase was observed at 95+5 kbar.
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FIG. 3. Pressure dependence of refractive index no at
—1.45 eV (crosses and solid line), and threshold energy
E, at a 5&10 cm ' (solid circles and dashed curve),
for a-As2S3. Note contrast with Fig. 2.
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dences are shown in Fig. 2. [The data shown here
for c-ZnTe are new, and were obtained by us in
hydrostatic-pressure experiments using the ruby-
calibrated diamond-anvil-cell technique. ' The ini-
tial (P =0) band-gap coefficient dE, /dP agrees well

with an earlier low-pressure result, ' and our
results for dn p/dP are the first reported for this
material. The pressure dependence of the refractive
index was obtained from the interference-fringe
spacing in the transparent region (see Fig. I).] In
contrast, Fig. 3 shows that for a-As2S3, E, has an
even stronger "red shift" to lower energy, whereas

np increases rapidly with pressure. In fact, for a-
As2S3 and many other molecular solids of low net-
work dimensionality ( & 3D), X is not only positive,
but unlike the alkah halides, 7' is substantially
greater than 1.

Kastner studied the effect of pressure on several

chalcogenide glasses and crystals, and applied the
Lorenz-Lorentz formalism to his results. The
local-field correction, initially believed to be sub-

stantial, was subsequently shown to be small.
Connell and Paul studied the pressure dependence
of ep and E, for amorphous and crystalline Si, Ge,
GaP, and GaAs. They found 7' nearly the same
for the amorphous and crystalline forms, and con-
cluded that the average Penn-Phillips gap Eg had
been unaffected by %he disorder. However, they
found dE, /dP &dEs/dP in the disordered solids,
contrary to the situation in crystals. They inter-
preted this as evidence against the virtual crystal
model as a description of band-edge states in amor-

phous III—V materials. Building on the observa-

tion that dE, /dP &dEs/dP in amorphous Si, Ge,
GaP, and GaAs, Lucovsky treated the photoelas-
tic behavior of chalcogenide glasses under the an-

satz d lnE, /dP =d lnEg /dP. Applying the Penn-
Phillips model, he obtained reasonable agreement
for Se, As2Se3, GeSe2, and As2S3. For reasons to
be mentioned below, we question his underlying as-
sumption.

In the present work our attention centers around
the different photoelastic response of covalent 3D-
network materials, and molecular solids of lower
network dimensionality. ' Stated succinctly, we
serve that X' &0 for the former and X' g 1 for the
latter. Among the materials studied, this empirical
correlation is strong enough to suggest that the
value of 7' can be a reliable indicator of network
topology. This is of particular interest for amor-
phous solids, in which the bonding topology is an
important structural issue' ' that must be de-
cided on the basis of a variety of evidence.

In Sec. II we detail the present photoelastic
model, and justify the assumptions involved. Sec-
tion III describes how Table I was constructed.
Section IV. discusses the main result of this study,
Fig. 4, and also develops the connection between

bonding topology and photoelastic response. A
- summary, Sec. V, concludes the paper.

4m' e NF
ep —1=

m

Here e and m are the electron charge and mass, X
is the forrnal number of valence electrons per
molecule participating in the oscillator, V is the
corresponding molecular volume, and F is the os-
cillator strength appropriate to the Penn-Phillips
model. ' XF is then the effective number of elec-
trons contributing to ep. The average gap Eg is de-

fined by Eq. (2). The Penn-Phillips theory is pre-
ferred here, rather than alternative single-oscillator
models (e.g., that proposed by Wemple and Di-
Domenico '

), because it allows us to argue in

favor of a small d lnF/d ln V term, as a conse-
quence of the f-sum rule. Differentiating Eq. (2)
with respect to volume gives

d lnF 2 dEg

dlnV Eg dlnV
(3)

A qualitative explanation has been suggested for
the opposite signs of dE, /dP and dip/dP in co-
valent solids with different network dimensionali-

ty. This explanation can be easily understood on
the basis of Eq. (3). Consider first Ge-family sem-

iconductors. Because of their 3D-network struc-
ture, a macroscopic compression decreases the
nearest-neighbor distance r, which in turn increases
the bonding-antibonding interaction, and thereby
increases E . The lower gaps, such as E„generally
follow suit. ' In this situation dEs /d In V &0,
and Eq. (3) implies X' & 1. In fact, X' &0 for these

covalent materials, so that np decreases with pres-
sure. The successful treatments of Van Vechten
and others leave litt, le doubt as to the validity of
this approach for covalent 3D-network solids.

For molecular solids of network dimensionality
less than 3, such as layered c-As2S3, the situation
is quite different. In this case, compression main-

ly forces the loosely bound molecular units closer

II. PHOTOELASTIC MODEL

The starting point of the present treatment is the
Drude formalism and the Penn-Phillips single-
oscillator model in which' '"
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eo—I = (&0—1)i+(ep —1)ii ~

Here the left-hand side (the total ep —1) is still
given by Eq. (2) and

(4)

together without substantially changing the in-
tramolecular distance r. Consequently, the
bonding-antibonding interaction will not be strong-

ly affected. Instead, the major change in electronic
energies should derive from band broadening due
to increased intermolecular overlap, so-.called
closed-shell interactions. This can explain the ob-
served negative dE, /dP. One might also argue
that np should increase as the electronic threshold

E, is reduced. However, Eq. (3) fails to predict
X' & 1 (the observed result), because we expect the
average gap Eg to be nearly unaffected by pres-
sure.

Our approach to this dilemma is as follows. The
molecular solids of interest here are all chalcogen
based. For this class of solids, measurement shows
that the valence electron contribution to the ima-

ginary part of the dielectric function, e2(co), con-
sists of two distinguishable regions. The low-
and high-energy regions, designated region I and
region II, are generally believed to originate from
transitions to antibonding states by nonbonding p-
electrons (chalcogen lone-pair electrons) and bond-

ing p-electrons, respectively. ' However, the extent
of hybridization is not necessarily small, as recently
shown by Althaus et al. for c-As2Se3.

To account for this dual structure in ei(co), a
two-oscillator model will be adopted, with each os-
cillator of the Penn-Phillips type,

(7)

where rl =EsX,/EiX. The dimensionless parameter

q is determined by the energies Eg, EI, and E».
Assuming insignificant interference from higher-

lying transitions, we adopt the condition
N+=nifi+niifii. Substituting this into Eqs. (2),
(4), and (5) yields

Eg EI,—Eg
2 2

7l— 2 2 (g)
E» —EI

Here E» &Eg & EI so that g & 0. If a single-
oscillator model is appropriate, viz. , E» ——Eg =EI,
then rl =1, and Eq. (7) reduces to Eq. (3). With
this convention, Eq. (7) can be used to treat both
the Ge-family semiconductors, and the molecular
chalcogenides.

The relative importance to ep of regions I and II
will be weighted toward lower energy because of
the Kramers-Kronig relation

ep —I =(2/ir) J e2(pi)/m da) .
0

where Xi » ——(ep —1), »/4n. . According to the qual-
itative explanation outlined above, ' the associa-
tion of region II with bonding-antibonding transi-
tions implies dEiild ln V=0 for molecular solids;
we shall neglect this term. Also the second and
third right-hand terms will be combined and denot-
ed by —(d lnf /d ln V)', the total effective oscillator
strength contribution. Thus, we arrive at the ana-

log of Eq. (3) for chalcogen-based molecular solids,

d lnf 2' dEi
d lnV Eg .d lnV

4iriii'e' ni, nf i,n
(5) However, both terms in Eq. (4) must be included to

preserve the f-sum rule, which requires

where the subscripted quantities pertain to region I
and region II. Following previous workers ' we
exclude nonbonding s-electrons from these regions;
they are normally deep enough to be considered
part of the core.

Differentiating Eq. (4) with respect to volume
and using Eq. (5) we find

Xi d»fi X» d»fnX'=i ——
d lnV 7 dlnV

Eg +I dEI
+

Eg EI 7 d lnV

r

2 Eg &II+
Eg EII 7 d lnV

N ~ I coE2(co)dco, '

and thus emphasizes high-energy transitions. In
the limit Eii » Es & Ei, we have Xi/X = 1 and

2i)/Es-2/Ei. Under these conditions Eq. (7)
simulates a single-oscillator model for the electrons
of region I. Many of the chalcogenide materials
(except the IV —VI's) fall approximately into this

category with En & 2Ei. (See Table I below. )

The two-oscillator model has been considered
previously for chalcogenide crystals and glasses. It
was rejected in Ref. 5 because the ratio of
bonding-antibonding to lone-pair oscillator energies

(Eii/Ei in the present notation) was assumed to be
pressure independent. This assumption seems un-

realistic because of the different bonding origin of
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regions I and II, and because the measured
dE, /d lnV are large. Although we expect
dEii/d ln V=0, it seems unlikely that
dEt/d ln V=0 at the same time. In Ref. 7, the
two-oscillator model was deemed unnecessary.
Instead, for amorphous solids Eq. (3) was used,
with connection made to E, through the ansatz
d lnE, /dP =d lnEg/dP. For chalcogenide glasses
this'also seems unrealistic, because it implies that
higher-energy transitions shift faster than lower en-

ergy ones, i.e., a pressure-induced band narrowing
not a band broadening. Furthermore, it would
seem that higher-energy transitions should be asso-
ciated with stronger bonds (as for En), and conse-
quently tend to be less pressure sensitive than
lower-energy transitions. For amorphous group IV
and III—V solids the observation that dE, /dP
& dEs/dP may stem from the void structure of
these materials. ' We shall see that the photoe-
lastic response of chalcogenide crystals and glasses
can be described quite well by the two-oscillator
model.

To summarize, the present treatment is based on
the Drude formalism, the Penn-Phillips dielectric
model, the experimental e2(co) indicating one oscil-
lator for Ge-type and two oscillators for chalco-
genide-based materials, and the assertion that
dEqi/d ln V=0 in chalcogenide solids of network
dimensionality less than 3.

III. CONSTRUCTION OF THE TABLE

To adequately test this model, it was necessary
to compile data on a large number of materials.
This is due both to the approximate nature of the
model and the large variations found among the
experimental photoelastic coefficients and band-gap
pressure derivatives. An additional uncertainty
derives from a lack of compressibility data for
many of the thin film materials. In the following
we discuss how the numbers in Table I mere deter-
mined. Although experimental errors are generally
not listed, the numbers have been rounded off such
that the last significant figure can be expected to
vary among different measurements. All tabulated
substances are labeled either crystalline (c) or
amorphous (a), except for the two crystalline forms
of GeS2. These are designated by their network
dimensionality, either 2D (layered), or 3D
("SiOz"-like). Of the other crystals having dif-
ferent polymorphic forms, c-S8 refers to
orthorhombic sulfur, c-Se and c-Te refer to the
trigonal structures, c-Si02 is a-quartz, c-Ge02 is

K(1)
E(2)

p g(2)

p ,)( 1 )

the soluble hexagonal form, and the zinc chal-
cogenides are the sphalerite varieties. For further
details and complete references, the reader should
refer to the table footnotes.

First of all, it was necessary to establish reliable
values for E, which requires knowledge of
NlV, F, and ep [see Eq. (2)]. For the Ge family
N =8 (two atoms per molecule for the elements);
for the other substances all valence electrons mere
included, except nonbonding s electrons. ' For ex-
ample N =(3X2+4X3)=18 for As„S„but
N =(4x 1+4X2)=12 for Si02. F has been shown
to be ——, in tetrahedral semiconductors. We
have adopted this value throughout. The small
variations in Eg that result from neglecting Van
Vechten's A and D corrections, are inconsequential
for the present analysis. The density p (g/cm ) is
also listed in Table I; the sources include both x-
ray and gravimetric measurements. For amor-
phous solids density is a nontrivial parameter,
depending on the material fabrication process and
the state of annealing. Variations of several per-
cent are common in the literature, and some au-
thors fail to mention the measured density of
glasses used in their pressure studies. Consequent-

ly, the quoted densities represent typical values.
Many of the tabulated ep values come from the
large compilations of Wemple et a/. ' They
were obtained by fitting dispersion data using a
Sellmeier oscillator scheme. Other sources include
infrared optical constants, reststrahlen results, and
measurements based on the frequency spacing of
fringes seen in transmission. For a-GeS2 the value
in Ref. 62 seemed low, and an average with our
own value was used. Ep for a-Ge02 was estimat-
ed by scaling (ep —1) of c-GeOz by p(a-
GeO2)/p(c-Ge02) assuming Es(c-Ge02) un-

changed, according to Eq. (2). The ep and E&
values so obtained for a-Ge02 are enclosed in
parentheses.

The macroscopic compressibility E was obtained
from experiment whenever possible. However, for
many of the materials, especially those existing
only as thin films, E is not known. In these cases
E was estimated by an empirical rule which has
been shown to hold for families of related crystal-
line and amorphous solids (e.g., for the As-Se sys-
tem). This rule relates the compressibilities E(1)
and E (2) of two materials by
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where p, &
is the mean molecular density. E

values for c-, a-GeSq, and c-, a-GeSe2 were ob-
tained from E (a-Se}; otherwise, E for an amor-

phous (crystalline) material was derived from its
crystalline (amorphous) partner. Compressibilities
so obtained appear in parentheses. The values
seem quite reasonable.

For those materials where sufficient data exist,
Ei and Eii were chosen to coincide with the peak
positions in regions I and II of the experimental
e2(co) spectra. For anisotropic crystals, a suitable

average over polarization directions was used. Ei is
generally close to the Sellmeier energy E0, deter-
mined by W'emple. ' Consequently, for c-S8,
which exhibits pronounced excitonic structure in

e2(co), we use Et ——[Eo(Wemple )]. rl for c-S&

was then computed using the approximation
n ~f~ ——, NF, i.—e., complete segregation of lone-pair

and bonding electrons into regions I and II. For
c-GeSe2, Ei and E~~ were determined by the two
peaks in a model e2(co) spectrum (e2 and e2 in Fig.
5 of Ref. 30) that was deduced from ellipsometry
.data. These energies were shifted downward by
0.3 eV for a-GeSe2, according to the analysis of
Ref. 30. Ei for 2D-GeS2 and a-GeS2 was estimat-
ed by scaling the c-GeSe2 value by the appropriate
ratio of threshold energies. For example,

E,(2D-GeS, )
Et(2D-GeS2) =Et(c-GeSe2)

E,(c-GeSe2)

g was then determined by requiring that nt fq!NF
have the c-GeSe2 value. For 3D-GeS2 the same
procedure was followed, except that Ei for a-GeSe2
was scaled, because of the similar photoelastic
response of 3D-GeS2 and a-GeSe2. We found that
the analysis was not sensitive to the exact conven-

tion chosen to establish Ei and Eii, as long as it
reasonably placed these energies within regions I
and II. Suitably defined moments of eq(co) would

also suAice. However, our model is sensitive to the
relative separations of Eq, Eg, and Eii through g
[Eq. (S)j.

For the molecular chalcogenides, the fraction of
valence electrons contributing to region I is given

by nqfq/NF. It is listed in the table, where ap-
propriate. If the value for a substance was not ob-
tained directly from the experimental Ei and Eiq of
that substance, it appears in parentheses. In such
cases g was obtained from the relation
rI=Es nrfr/EiNF.

The tabulated band-gap volume derivatives are
those available for the E2 gap in the Ge-family ma-
terials and for the E, gap in the chalcogen-based

solids. References cite the measured pressure coef-
ficients which were subsequently divided by the
appropriate compressibility. The literature was
surveyed in order to select the most reasonable and
reliable values. In many cases the quoted experi-
mental error is less than the variation among dif-
ferent studies. Where two sources are referenced,
their average is used. On the whole, an uncertain-

ty of 30% is reasonable for these volume deriva-
tives.

7' characterizes the photoelastic response of the
materials studied. For many of the cubic and iso-
tropic solids, .the quoted X' were measured directly
in hydrostatic pressure experiments, using various
interference fringe techniques. ' ' ' ' For aniso-
tropic (and some cubic) substances, X' was comput-
ed from appropriate averages of the photoelastic
tensor components p;J. In general, one has

Q pijere' /(eo —1)2

x'= " (10)
3+e;

where e0; and e; are dielectric constant and strain

components. Thus for cubic and amorphous solids

&'=eo(p»+2& i2 }/3«o —1}.

When the complete set of p,j was not known, a
suitable approximation was made. The table foot-

notes give greater detail. As for the band-gap coef-

ficients, the available literature was surveyed to
select the best values. Published experimental er-

rors are again not included, because they are gen-

erally less than the variation among different mea-

surements. Instead, to give the reader a realistic
idea of the uncertainty in X', all results deemed

reasonable for a given material are listed. The
most studied material seems to be a-As2S3, where

the average of 7 measuremerits yields

X,'„=2.0+10%. The published error is included

for a-GeSe2 to show that X' is less than 1. Note
that the overall uncertainty in 7' is consistent with

the approximate nature of our model.

IV. DISCUSSION OF RESULTS

The solids under consideration fall into three
groups, according to their P' values. Ge-family
solids exhibit X' &0, molecular chalcogenides
display X'& 1, and several group IV—VI com-
pounds have 0 &X' & 1. We now try to understand
these empirical trends on the basis of Eq. (7}. Our
analysis points to a relationship between this classi-
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fication scheme and network dimensionality.
Referring to Eq. (7), X'= I is obtained if the

pressure-induced change in eo derives solely from a
density increase. The condition g ~ 1 is deter-
mined by the sign of the appropriate energy-gap
volume derivative when (d 1nf/d ln V)' can be
neglected. According to the discussion in Sec. II,
for the 30-network Ge family we expect this coef-
ficient (viz. , dEs/d ln V) to be negative, correspond-
ing to a compression-induced increase in the
bonding-antibonding interaction. For the molecu-
lar chalcogenides, we anticipate that dEi/d lnV
will reflect pressure-induced band broadening in
some way. The fact that 7'& 1 implies that
dEi/d lnV&0. Although this is consistent with
the sign of dE, /d ln V, a quantitative relationship
between the pressure coeAicients of the threshold
and Ei gaps, is not apparent.

Our approach to this is empirical. Consider first
the Ge-family semiconductors. It is well known

that dEg/d lnV is approximately the same for these
materials. ' The average measured coefficient for
the E2 gap is (dE2/d ln V)„=—3.3+0.7 eV, con-
stant to within 20%%uo, and negative. (Ez is the opti-
cal gap most closely related to the Penn-Phillips

Es. Data exist for c-Si, c-Ge, c-InSb, c-GaSb. )

Consequently, Eq. (7) predicts that X' should exhi-
bit an approximate linear dependence on 1/Eg.
This is indeed the case, and the extent of correla-
tion can be seen in Fig. 4. This result is rather ap-
pealing. It implies [see Eq. (2)] that (X' —1) scales
as (XV/N)' [if (d Inf /d ln V)* is small].

It would be advantageous to preserve this simple
scaling for the chalcogen-based solids. According
to Eq. (7), X' will depend linearly on rl/Es if
dEi/d ln V is constant. Although this coefficient
has not been measured, Table I shows that
dE, /d lnV is roughly the same for those molecular
chalcogenides with 7'& 1. For the nine such ma-

terials where data exist (excluding c-Ss, see below),

(dE, /d lnV), „=2.5+0.7 eV, constant to 30%, and

positive. Consequently, it seems reasonable to ex-

pect a similar material independence for
dEi/d lnV, and we shall find this to be the case.

To test our model for both Ge-family and chal-
cogenide solids, and to discover the connection
between dE, /d ln V and dE&/d lnV, the following
scheme was used. 7' was plotted against 2p/Eg,
with rl= 1 when P' & 1, and r) given by Eq. (8)
when 7'&1. This plot is shown in Fig. 4. If Eq.
(7) is indeed appropriate and dEs/d lnV and
dEi/d ln V are approximately constant, we expect
two straight lines, with slopes reflecting the aver-

age values of these energy-gap derivatives. The
model's validity can then be judged by the extent
of linear correlation and how closely the slopes
compare to experimental coefficients. For Ge-
family materials, the slope should be similar to
(dE2/d lnV), „. For molecular chalcogenides, com-
parison of the X'& 1 slope with (dE, /d lnV), „
should reveal the sought-after relation between

dE, /d ln V and dEi/d ln V. Our model is further
judged by the reasonableness of this relation.

Eleven crystalline and amorphous Ge-family ma-
terials are plotted in Fig. 4. The extent of linear
correlation is high —certainly within the experi-
mental uncertainty defined by the spread in P'
values for a given substance (see for example, c-Ge,
c-Gap, c-Si). The best-fit line for these I' & 0 ma-

terials, forced to intersect X'=1 at 2'/Eg ——0 [viz. ,
assuming (d 1nf/d ln V)' =0], has the slope —3.g

eV, nearly the same as —3.3+0.7 eV (Ref. 25) for
(dE2/d lnV), „. This agreement was to be expected
on the basis of previous work.

%hat is more surprising is that the degree of
linear correlation is similar for molecular chal-
cogenides, having g' & 1. Seven crystalline and
amorphous materials of this type are plotted in

Fig. 4. Again, the extent of linearity is well within
the typical experimental uncertainty (see for exam-

ple, a-As2S3 and c-Ss). A linear correlation would
also result, but a weaker one, if we were to naively
plot X' versus 2/Eg, as for a single oscillator [see
Eqs. (3), (7), and (8)]. This is because q= 1 for
most of these substances (see Table I). However,
we would then be forced to interpret the large posi-
tive slope as reflecting the value of dEg/d ln V.

This would be incompatible with our expectation
that the bonding-antibonding gap be insensitive to
compression in a molecular solid. In fact, it would

imply a substantial compression-induced expansion
of the nearest-neighbor distance, a highly unlikely
situation. Only if 2/Eg is scaled by g are we jus-
tified in interpreting the positive 7'& 1 slope in

Fig. 4 as giving dEI/d lnV. Again forcing the in-

tercept to be at X' = 1 [corresponding to
(d lnf/d ln V)* =0], the best-fit value of this slope
is 2.7 eV. This is essentially the same as
(dE, /d lnV), „=2.5+0.7 eV.

From these results we draw the following con-
clusions. The similar degree of linear correlation
in Fig. 4, for Ge-family solids having 7' &0 and
molecular chalcogenides with 7' & 1, supports our
model. The use of Eq. (7), with g given by Eq. (8)
seems justified for both classes of solids. For the
former group, a single-oscillator model is appropri-
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FIG. 4. Plot of experimental P' versus 2g/E~, with g—:1 for P'& 1 and g given by Eq. (8) for P'& 1. Triangles and
dots denote crystalline and amorphous solids, respectively. Data scatter indicates experimental uncertainty in J; for a-
AsqS3, error bar shows the +10% variation of seven different measurements. Points representing2D-GeSq and 3D-GeSq
are labeled accordingly. 3D-GeSz is plotted twice (g = 1 and g=0.05) because it falls on the P'= 1 border.
(dEi/d ln V),„=2.7 eV and (dE~/d lnV), „=—3.8 eV are the best linear fit slopes for g' & 1 and g' &0 materials, respec-
tively; intercepts at P'=1 are forced. Materials with 0&+' & 1 are excluded from fits. See text for further interpreta-
tion.

ate, and the negative slope of 7' versus 2/Ez re-
flects dE~/d lnV. Compression mainly increases
the bonding-antibonding gap at the rate

(de ld ln V),„=—3.8 eV, which is roughly materi-
al independent within the Ge family. For the
X'~ 1 molecular chalcogenides, a two-oscillator
model is appropriate, with dE»/d ln V
&&dE&/d lnV. The positive slope of g' versus

2'Q /Eg reflects dE& /d ln V. This coefHcient is

(dEt /d ln V),„=2.7 eV, approximately equal to the
coe6icient for the threshold gap, both of which are
largely material independent. Although for a given
given chalcogenide crystal the volume derivatives
of specific gaps may vary, ' as they do for Ge-
family crystals, on the average compression
causes a uniform red shift of region I while region
II remains stationary. Thus, for these molecular
chalcogenides, the expected pressure-induced band
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broadening is manifest in the photoelastic response
through the increased separation of EI and E».

These conclusions can be related to bonding to-
pology, by considering the analogy to the pressure
dependence of optical phonons in solids having dif-
ferent network dimensionality. The effect of com-
pression on a phonon of frequency v; is charac-
terized by its mode Griineisen parameter

yi
———d Inv;/d lnV. For the Ge family, optical

phonons exhibit y;-1. This value reflects the
nearest-neighbor bond compression hr, which, be-

cause of the isotropic 3D network, is related to the
macroscopic AVby 3hr/r =hV/V. For
chalcogen-based molecular solids, a single y; is not
appropriate. High-frequency (internal) modes are
much less sensitive to compression than low-

frequency (external) vibrations; in fact one can have

(y;„,/y, „,)—(1/100). The detailed relationship
of this result to the large bonding-strength dichoto-
my in low ( & 3D}-network dimensionality solids
was explained by Zallen. In essence, the stiff
nearest-neighbor bonds that form the covalent
( & 3D)-network are "insulated" from compression
by the soft intermolecular (i.e., internetwork)
forces. The latter bear the brunt of the macroscop-
ic volume change. Zallen proposed, and supported
with extensive high-pressure Raman data,
a scaling law in which y;~v; ~k; '. Here k; is
the force constant for mode i.

This picture of the response of phonons to pres-
sure has definite implications for electronic transi-
tions. For the 3D-network Ge family, Eg should
increase strongly in response to the negative br.
Therefore [from Eq. (3) or (7)] g' & 1, and in fact
dEg/d ln V is always large enough so that g' & 0.
For the ( & 3D)-network molecular chalcogenides,
the association of EII with bonding-antibonding
transitions implies that dE»/d lnV is small be-
cause hr is small. In contrast, the association of
EI with transitions from states having substantial
nonbonding (lone-pair) character implies dEi/d ln V
is large. This is because nonbonding electrons are
located with greatest probability in the highly
compressible intermolecular (internetwork) volume
away from the bonds. Although the P') 1 and
X' & I slopes in Fig. 4 suggest that dEr/d ln V and
dEII/d lnV would have similar magnitudes if the
macroscopic compression were equally applied, the
bonding-strength dichotomy does not permit this.
One can write

dEi, n/d lnV=(dEi ii/d lnVi rr) X (Kr, rr/&)

where EI and XII denote the microscopic compres-

sibilities of the intermolecular voIume VI and the
intramolecular volume V». Thus, using

I
dEi/d»Vr

I
=

I
dEu/d ln Vn

I
and the results of

Refs. 70—'72, we estimate

dE»
d lnV

dEI +II kext

d1, k;„,

where k,„, and k;„, are typical force constants for
external and internal vibrations. This justifies re-
taining only the term in dE, /d ln V in Eq. (7).
Furthermore, we expect dEild lnV to reflect any
compression-induced band broadening, because
nonbonding electrons, by virtue of their location,
should be most susceptible to increased intermolec-
ular overlap. Even in cases where substantial hy-
bridization is likely, e.g., c-As2Se3, it appears that
the effects of compression are dominated by the
principal location of the electrons, either in the
inter- or intramolecular volume. Since the data
show that band-broadening occurs through a uni-
form red shift of region I with respect to a station-
ary region II, dEi/d lnV is large and positive and
7') 1.

In this way, the observed photoelastic trends can
be related to bonding topology. We suggest that
the correlations in Fig. 4 are sufficient for 7' to be
used as a handy indicator. 7' &0 implies a co-
valent 3D-network solid, and 7') 1 implies a solid
of covalent network dimensionality less than 3.

A third category is fprmed by materials having
0&7'& 1. This group contains the more ionic al-
kali halides, ' and many hybrid composition group
IV —VI solids. Within the present model there are
two probable ways to realize 0 &P'(1. Referring
to Eq. (6), if dEild lnV=dEiild ln V=0, then the
only contribution to 7' is the density increase term,
and 7'=1. This may approximate the situation in
alkali halides. However, band-gap changes are not
negligible in alkali halides because X, though posi-
tive, is less than 1.' The second possibility is that
the terms containing dEild lnV and dEii/d ln V in
Eq. (6} are comparable, but of opposite sign. Their
cancellation would again make the density term
dominant. This type of fortuitous cancellation is
perhaps more likely in c-GeSe2, a-GeSe2, and 3D-
GeS2, for which experiment indicates two oscilla-
tors of similar strengths. However for these ma-
terials, as well as Si02 and Ge02, the role of ionici-
ty should not be ignored.

It seems somewhat anomalous that a-GeSeq hasI' & 1 while a-GeS2 is firmly in the ( &3D)-network
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molecular class, with 7'=1.5. A recent structur-
al model of both glasses places them in the molecu-
lar group, with locally layerlike "outrigger rafts"
forming topologica11y one-dimensional units. '

Since the bona fide layer crystal 2D-GeS2 has
X'=1.6, the a-GeS2 result appears normal. How-
ever, X'=0.8+0.. 1 for a-GeSe2 is closer to X'=1.0
for 3D-GeS2, which sits on the borderline of our
classifIcation scheme. [Accordingly, X' (3D-GeS2)
is plotted against both 2/Eg and 2rj/Es in Fig. 4.]
We conclude that the present situation for materi-
als with 0&7'& 1 is ambiguous. A strict correla-
tion of 7' with network dimensionality may not be
realistic, especially for complicated structures such
as 3D-GeS2.

Finally, we note the case of c-S8. A Lorenz-
Lorentz treatment may be more appropriate here,
because the S8 rings of this OD-network ' solid do
not have macroscopic extent. The value of X' so
obtained [using X'=(@0+2)/3] is X'=2.0, in good
agreement with experiment. For this reason we ex-
cluded c-Ss when computing (dE, /d lnV), „ for
7' & 1 materials.

V. SUMMARY

The different photoelastic response of Ge family
and chalcogen-based molecular solids was investi-

gated. This difference is reflected in the sign and
magnitude of the susceptibility Gruneisen coeffi-
cient X'. New data to 80 kbar were also presented
for c-Zn Te.

Within the Drude formalism, eo was approxi-
mated by one Penn-Phillips oscillator for the Ge
family, and two such oscillators (with strengths
determined from experiment) for the molecular
chalcogenides. Our largely empirical approach was

guided by the experimental e2(c0) spectra. An ad-
ditional rationale for the two-oscillator model is
the presence of both bonding and nonbonding elec
trons in chalcogenide solids. An expression [Eq.
(7)] for X' was obtained that is applicable to both

groups of materials. This expression predicts a
linear dependence of X' on 2'/Es, given the ap-
proximate material invariance of measured band-

gap volume derivatives. The 7'& 1 slopes of this
dependence should yield dEg/d ln V for the Ge
family (q—:1), and dE, /d ln V for molecular chal-
cogenides.

The quantities needed to test our model were ta-
bulated for 29 materials of interest. The literature

was surveyed to obtain the best values. Unmea-
sured compressibilities were estimated from density
ratios by an empirical law connecting related ma-
terials. The experimental dE2/d ln V for the Ge
family, and dE, /d ln V for the chalogenides, were
included for comparison with the slopes in the 7'
versus 2'/Es plot. The materials divide into three
classes according to their P' values. The Ge-family
substances have 7' &0, whereas the molecular chal-
cogenides (save perhaps a-GeSe2) have X' & 1.
Several group IV —VI hybrids have 0&7'& 1, a re-
gime known to apply also to alkali halides.

A plot of 7' versus 2g/Eg was constructed, with
rt

—= 1 for X' & 1, and g given by Eq. (8) for X' & l.
As predicted, two linear correlations were found;
their slopes were in excellent agreement with the
measured (dEg /d ln V),„ for g' & 0 materials, and
with (dE, /d lnV), „ for g'& 1 solids. The observed
linear dependences applied equally well to both
crystalline and amorphous materials. These results
constitute definite evidence in support of our
model. In addition, we find that the band broaden-
ing expected for molecular chalcogenides is mani-
fest through a uniform red shift of oscillator I, viz. ,
dEt/d lnV =(dE, /d InV),„&0, with respect to a
stationary oscillator II, viz. , dEiild ln V=O.

An argument was put forward relating the ob-
served photoelastic trends to network dimensionali-
ty. Ge-family materials have 7'&0 because their
3D-network structure allows the macroscopic
compression to be completely transferred to
covalent-bond reduction. This is not possible for

- the molecular chalcogenides because their ( & 3D)
networks introduce vastly different microscopic
compressibilities for intramolecular and intermolec-
ular volumes. This situation for electronic transi-
tions is analogous to that for phonons. ' ' In both
cases, and for the same reasons, high-energy excita-
tions are much less sensitive to compression than
low-energy ones. The relative sensitivities should
scale as the ratio of intra- to intermolecular force
constants, which can be as low as —10 in
molecular chalcogenides. The strong effect of over-
lap on electrons located in the intermolecular
volume explains dEi/d lnV &0. Finally, it was
suggested that 7' should be a reliable indicator of
bonding topology, viz. , 7'&0 for covalent 3D-
network solids, and X'& 1 for (& 3D)-network
structures. However, this correlation does not ap-
pear to extend to 0 &7'(1 materials for which the
present situation seems ambiguous.
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